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Abstract 
 

The operation of the sequencing batch reactor (SBR) can be optimized by controlling the 
dissolved oxygen concentration, the dosage of external carbon, nitrification and denitrification, 
and the phase length of aeration (fills and react period). In this work, the analyses and tested 
with open loop identification the effect of fill and react period change on the performance of 
the SBR were studied. The process dynamic has been tested to determine the effect of Fill (tf) 
and React (tr)period changes on soluble substrate (Ss), soluble intermediate product (Ps), inert 
substrate (Si), particulate organics concentration (Xs), active biomass concentration (Xa), inert 
biomass concentration (Xi), the total biomass concentration (Xto) and the effluent chemical 
oxygen demand (COD) concentration in the SBR. In all simulations the total Fill and React 
time were set at 6 h, with the Fill time varied at 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, and the 
corresponding react time set at 5.5 h, 5 h, 4.5 h, 4 h, 3.5 h, and 3 h, respectively. 
 
Keywords: fill time and reaction time, sequencing batch reactor, wastewater treatment  

 
 
1. Introduction 
 

Many models for suspended growth processes 
have been proposed in the wastewater 
treatment literature but the success of any 

mathematical model for a system depends 
mainly on its ability to predict accurately the 
system performance. Perhaps the most 
comprehensive was the task group model 

that detailed the most important events 
occurring in such systems (Henze et al., 
1987). The sequencing batch reactor (SBR) 
system was also modeled by Orhon et al. 
(1986), depending on Monod kinetics. 
Ibrahim (1990) developed a structured 

kinetic model of the SBR.  Ibrahim and 
Abasaeed (1995) introduced a model which 
was structured upon four processes: 
substrate associated growth process, product 
associated growth process, hydrolysis pro-
cess, and decay processes. 
 

SBR are mainly used for treating wastewater 
in suspended-growth process. They are 
suitable for treating wastewater and reducing 
the effluent COD concentration. In the SBR, 
all treatments takes place in a single reactor 
with different phases separated in time. 
Wastewater is added, simultaneously treated 

during the fill-period, and then treated during 
the react-period followed by a settle-period, 
before finally withdrawn during the withdraw-
period (Abasaeed, 1999). 

In this paper, the model which was previously 
developed by Ibrahim and Abasaeed (1995) 

was used to study the sensitivity of the model 
predictions to changes in the values of the 

volumetric flow rate (Q), fill time )( ft  and 

reaction time (tr). However, effective control 
and operation partially depend on 

understanding the process behavior and the 
ability to simulate and predict the process 
dynamics. Therefore, the modeling of 
activated sludge processes has received 
considerable attention lately. 
 
 

2. Methodology 
 

2.1 Sequencing Batch Reactor Process 
 

In the SBR system, all treatment takes place 
in a single reactor with different phases 
separated in time. The cycle in a typical SBR 

is divided into five discrete time periods: Fill, 
React, Settle, Draw, and Idle. Illustration of 

SBR process is shown in Fig. 1. The 
stoichiometric, kinetic parameters and feed 
conditions used in model simulation are listed 
in Table 1. The data used in this study were 
obtained from an instrumented bench scale 
SBR (Orhon et al., 1986). 
 

In the experimental setups (Orhon et al., 

1986), the timer was programmed to allow 
air into the reactor only during fill and react 
times, at a rate that would sustain mixed 
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liquor dissolved oxygen concentration greater 
than 2.0 mg/l. Two additional timers 
controlled the substrate influent and effluent 
pumps, respectively. The pumps were so 

adjusted to have a total volume of 6 liter at 
the end of fill time, and a settling volume of 
1.8 liter, so that the incremental substrate 
flow treated in each cycle was 4.2 liter, value 
identical to those used by Dennis and Irvine 
(1979) for comparative evaluation. The 
system was operated on a four cycles / day 

basis, so that single cycle duration was 6h, 
and the total time devoted to fill and react 
mode was 4h. One hour for settle time and 
half an hour each for draw and idle times 
accounted for the remaining 2h. 

 

2.2 Mathematical Model 
 
This model is based on the work of Ibrahim 
and Abasaeed (1995) for complete aerobic 
systems. The model does not include the 
nitrification and denitrification processes.  
 

The model presented here is, therefore, 
structured upon four processes. The 
processes are substrate-associated growth 
process, product-associated growth process, 
hydrolysis process, and decay process.  
 

Three soluble components and three 
particulate materials are considered in the 
model. The proposed model is presented 

below in matrix format.  
 
In the proposed model, all biomass (Xs, Xa, 
and Xi) concentrations are based on total 

volume. The two substrates and the 
intermediate product (Ss, Ps, and Si) 
concentrations are based on bulk liquid 
volume.  
 
The relationship between the bulk volume 
(Vb) and the total volume (Vt) is given by the 

following equation. 
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The mass balance equations for various 
components are as follows. 
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Figure 1. Illustration of a SBR tank during one 

complete cycle (Orhon, 1986). 

 
Table 1. Process kinetics and stoichiometry (Ibrahim and Abasaeed, 1995). 

Component i 
Process j 
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The total Biomass ( toX ) is the summation of 

the three concentration (Xt0 = Xs + Xa + Xi) 
and the total Chemical Oxygen Demand 
(COD). 
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Table 2. Kinetic and stoichiometric parameters (Orhon, 1986; Ibrahim and Abasaeed, 1995). 

Parameter Value Unit 

Maximum specific hydrolysis rate:                          
hK  0.0916 h-1 

Half saturation coefficient for hydrolysis:                 
xK  0.15 mgCOD/l 

Half saturation constants for substrate growth:        
sK  20.00 mgCOD/l 

Half saturation constants for product growth:          
pK  500 mgCOD/l 

Death rate coefficient:                                           
hB  0.052 h-1 

Fraction of aX  converted to iX :                            
pf  0.08 dimensionless 

Wet density of biomass:                                        
w  100.000 mg/l 

Intermediate product COD formed/cell COD formed:
py  0.25 dimensionless 

Fraction of sX  hydrolyses to iS :                               0.025 dimensionless 

Inhibition constant in switching function:                
1  60 mgCOD/l 

Specific growth rates:                                           
m  0.45 h-1 

Residual glucose concentration:                             *S  5 mgCOD/l 

Cell COD formed/substrate COD consumed:            
hy  0.5 dimensionless 

Volumetric flow rate:                                             Q  3 l/h 

Total volume:                                                        V  6 l 
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The above equations are applicable to 
reaction period also with modifications. The 
model given by Equations (1) to (7) is for fill 
time period in the process. During reaction 
time in batch SBR process, the volumetric 
flow rate is nil, the Vt is constant at Vo, and 

the initial conditions are different as 

compared with fill time. Values of kinetic 
parameters and feed conditions used in 
model simulation are listed in Table 2 and 
Table 3. 
 

 
3. Results and Discussion 
 
3.1 Effect of Fill and React Period 

Changes on Ss, Ps, Si and COD 
profiles 

 

Figure 2 shows the effect of fill time varied at 
0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, and the 
corresponding react time set at 5.5 h, 5 h, 
4.5 h, 4 h, 3.5 h, 3 h on Ss, Ps, Si and COD 

profiles and shows the results of the Ss, Ps, 
Si, and COD. It is clear from the figure that 
the concentration of the soluble substrate 

(Ss), increased slowly during the fill-period 
but it fell sharply at the end of it. The figure 
also reveals that during the fill-period the 
total rate of formation of the soluble 
intermediate (from soluble substrate and due 
to hydrolysis of stored biomass) exceeded its 

rate of depletion (due to reaction and also 
because of dilution). The rate of formation of 
Ps was highest at the early stages of the fill-
period and decreased towards the end of the 
fill-period. The concentration of the 
intermediate continued to increase slightly till 
the end of the react-period. The 

concentration of the inert substrate, Si,  

increased with time as it was being 
continuously formed.  
 
The total COD is the summation of the three 
concentrations (Ss, Ps, Si), and therefore the 
shape of the COD curve is indicative of the 
contributions of the various components, e.g. 

during the fill-period, the intermediate 
product and the inert substrate were 
primarily responsible for the shape of the 
COD curve. 

 
The COD profile increased during the fill 
period due to total rate of formation of 

soluble intermediate exceeding its rate of 
depletion and dilution (because of filling 

wastewater) , and decreased rapidly in the 
early part of the react period. After this, it 
continuously decreased slightly until the end 
of the react-period.  
 

From Figure 2(A), it can be noted that the 
reaction period can be terminated at 1h 
because completed biodegradation is 
achieved by then. From the Figure 2(B), it 
can be seen that the completed 
biodegradation is achieved at 1.5 h. The 
results for the other periods can be seen in 

Figure 2(C) to 2(F) and shown in Table 4. 
 
3.2 Effect of Fill and React Period 

Changes on Xs, Xa, Xi and Xt0 Profiles 

 
Figure 3 shows the effect of  fill time varied 

at 0.5 h, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, and the 
corresponding react time set at 5.5 h, 5 h, 
4.5 h, 4 h, 3.5 h, 3 h on Xs, Xa, Xi and Xt0 
profiles and shows the results for the Xs, Xa, 
Xi, Xt0. It should be noted that the total 
biomass concentration is the summation of 
the three-biomass constituents (Xs + Xa + 

Xi). During the fill-period and because of 
dilution (and to a lesser extend due to decay 
process) the concentration of active biomass 
decreased sharply compared with its 
decrease after the fill-period (which is due to 
the decay process alone). 

 
Table 3. Influent characteristics and SBR initial condition (Orhon, 1986; Ibrahim and Abasaeed, 1995). 

Parameter Influent Initial condition Unit 

Soluble product concentration:                    
sP  0 25 mgCOD/l 

Soluble inert substrate concentration:          
iS  50 50 mgCOD/l 

Soluble substrate concentration:                  
sS  1,500 10 mgCOD/l 

Chemical oxygen demand concentration:  COD  1,550 85 mgCOD/l 

Active biomass concentration:                    
aX  0 8,350 mgCOD/l 

Inert particulate organics concentration:      
iX  10 1,500 mgCOD/l 

Particulate organics concentration:              
sX  750 750 mgCOD/l 
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Figure 2. The effect of fill and react period changes with the variation of filling and reaction time on of 

Ss, Ps, Si, and COD. 
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Figure 3. The effect of fill and react period changes with the variation of filling and reaction time on of 

Xs, Xa, Xi, and Xt0. 
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The concentration of the inert biomass (Xi) 
decreased during the fill-period (dilution 
effects were more pronounced than its rate of 
formation from the active biomass) and it 
increased after the end of the fill-period due 
to its formation from Xa(Figure 4). 
 

 
 
4. Conclusion 

 
The analyses and tested with open loop 

identification to study the effect of fill time 
(tf) with the varied at 0.5 h, 1 h, 1.5 h, 2 h, 
2.5 h, 3 h and reaction time (tr)  set at 5.5 h, 
5 h, 4.5 h, 4 h, 3.5 h, and 3 h, respectively 

on SBR to the effluent of COD concentration, 
soluble intermediate product (Ps), inert 
substrate (Si), soluble substrate (Ss), active 
biomass (Xa), inert biomass (Xi) and stored 
biomass (Xs) concentration were studied. 
From these results, it can be seen that the 
optimum condition is got at a value of 

volumetric 12 l/h, fill time at 0.5 h and 
reaction time at 5.5 h. An adequate model 

enhances the understanding of biological 
phenomena and it can be a basis for better 
process design, control, and optimization of 
the reactor system. 

 
Nomenclature 
 
Bh  =  death rate coefficient (h-1) 

fp. = fraction of Xa  converted to XI 
Kh  =  maximum specific hydrolysis rate (h-1) 
Kp  =  half saturation constants for product    

growth (mg COD/l) 
Kx  = half saturation coefficient for hydrolysis 

(mg COD/l) 

Ks  =  half saturation constants for substrate 
growth (mg COD/l) 

Ps  = soluble product concentration (mg 
COD/l) 

Q  =  volumetric flow rate (l/h) 
S*  = residual glucose concentration (mg 

COD/l) 

Si.  = soluble inert substrate concentration 
(mg COD/l) 

Ss  = soluble substrate concentration (mg 
COD/l) 

Vb  =  liquid phase volume (l) 
Vt   =  total volume (l) 
Xa  = active biomass concentration (mg 

COD/l) 
XI  =  inert particulate organics concentration 

(mg COD/l) 
Xs  = particulate organics concentration (mg 

COD/l) 
Xto = total biomass concentration 

[mg(organic COD)/l] 
Yp = gm intermediate product COD 

formed/gm cell COD formed. 
 
Greeks Letters 
 
  =  fraction of Xs hydrolyses to SI 

1  = inhibition constant in switching function 

(mg COD/l) 

 
Figure 4. The effect of fill time of 1 h and react 

time of 5 h on active biomass (Xa). 

Table 4. Effect of Volumetric (Q), fill time (tf), and reaction time (tr) on the effluent COD, Ps, Si, Ss, Xt0, 
Xa, Xi, and Xs in SBR. 

)(Q  

(l/h) 

ft  

(h) 

rt  

(h) 

optt  

(h) 

COD  

(mg/l) 

sP  

(mg/l) 

iS  

(mg/l) 

sS  

(mg/l) 

aX  

(mg/l) 

iX  

(mg/l) 

sX  

(mg/l) 

12 0.5 5.5 1 68.69 31.38 37.31 0 3,129 641.7 653.21 

6 1 5 1.5 68.83 31.56 37.27 0 3,130 641.0 661.56 

4 1.5 4.5 2 68.97 31.74 37.23 0 3,131 640.3 670.07 

3 2 4 2.5 69.11 31.92 37.19 0 3,131 639.6 678.76 

2.4 2.5 3.5 3 69.25 32.10 37.14 0 3,132 638.9 687.65 

2 3 3 3.5 69.39 32.29 37.10 0 3,132 638.2 696.74 

1.5 4 2 4.5 69.68 32.66 37.02 0 3,132 636.7 715.54 

1.2 5 1 5.5 70.14 33.16 36.99 0 3,123 632.8 735.03 
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m  =  specific growth rates (h-1) 

w  =  wet density of biomass (mg/l) 
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